Confinement and propagation characteristics of subwavelength plasmonic modes
نویسنده
چکیده
We have studied subwavelength confinement of the surface plasmon polariton modes of various plasmonic waveguides and examined their relative merits using a graphical parametric representation of their confinement and propagation characteristics. While the same plasmonic phenomenon governs mode confinement in all these waveguides, the various architectures can exhibit distinctive behavior in terms of effective mode area and propagation distance. We found that the waveguides based on metal and one dielectric material show a similar trade-off between energy confinement and propagation distance. However, a hybrid plasmon waveguide, incorporating metal, low index and high index dielectric materials, exhibits longer propagation distances for the same degree of confinement. We also point out that plasmonic waveguides with sharp features can provide an extremely strong local field enhancement, which is not necessarily accompanied by strong confinement of the total electromagnetic energy. In these waveguides, a mode may couple strongly to nearby atoms, but suffer relatively low propagation losses due to weak confinement. 4 Author to whom any correspondence should be addressed. New Journal of Physics 10 (2008) 105018 1367-2630/08/105018+14$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 28 OCT 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Confinement and Propagation Characteristics of Subwavelength Plasmonic Modes 5a. CONTRACT NUMBER
منابع مشابه
Subwavelength dynamic focusing in plasmonic nanostructures using time reversal
We employ time reversal for deep subwavelength focusing in plasmonic periodic nanostructures. The strong anisotropy enables propagating modes with very large transverse wave vector and moderate propagation constant, facilitating transformation of diffraction-limited plane waves to high-K Bloch waves in the plasmonic nanostructure. Time reversal is used to excite the waves in the nanostructure a...
متن کاملA hybrid plasmonic waveguide for subwavelength confinement and long-range propagation
The emerging field of nanophotonics1 addresses the critical challenge of manipulating light on scales much smaller than the wavelength. However, very few feasible practical approaches exist at present. Surface plasmon polaritons are among the most promising candidates for subwavelength optical confinement. However, studies of long-range surface plasmon polaritons have only demonstrated optical ...
متن کاملMulti-mode Hybrid Plasmonic Waveguides with Enhanced Confinement and Propagation
A hybrid waveguide, which consists of a dielectric wire above a dielectric-metal interface, has been previously proposed to achieve high confinement with low loss. By exciting this geometry with an aperture in the metal that takes advantage of the extraordinary transmission through subwavelength apertures, it is possible to strongly couple to multiple modes. The real part of the fundamental mod...
متن کاملAsymmetric hybrid plasmonic waveguides with centimeter-scale propagation length under subwavelength confinement for photonic components
An asymmetric hybrid plasmonic metal-wire waveguide is proposed by combining the advantages of symmetric and hybrid plasmonic modes. The idea of asymmetric structure eliminates the adverse effect of a substrate and enhances the optical performance of the waveguide. The guiding properties of the proposed waveguide are intensively investigated using the finite elements method. The results exhibit...
متن کاملSubwavelength plasmonic lattice solitons in arrays of metallic nanowires.
We predict theoretically that stable subwavelength plasmonic lattice solitons (PLSs) are formed in arrays of metallic nanowires embedded in a nonlinear medium. The tight confinement of the guiding modes of the metallic nanowires, combined with the strong nonlinearity induced by the enhanced field at the metal surface, provide the main physical mechanisms for balancing the wave diffraction and t...
متن کامل